Constraint Qualification, the Strong CHIP, and Best Approximation with Convex Constraints in Banach Spaces

نویسندگان

  • Chong Li
  • K. F. Ng
چکیده

Several fundamental concepts such as the basic constraint qualification (BCQ), the strong conical hull intersection property (CHIP), and the perturbations for convex systems of inequalities in Banach spaces (over R or C) are extended and studied; here the systems are not necessarily finite. Their relationships with each other in connection with the best approximations are investigated. As applications, we establish results on the unconstrained reformulation of best approximations with infinitely many constraints in Hilbert spaces; also we give several characterizations of best restricted range approximations in C(Q) under quite general constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinearly Constrained Best Approximation in Hilbert Spaces: The Strong CHIP and the Basic Constraint Qualification

We study best approximation problems with nonlinear constraints in Hilbert spaces. The strong “conical hull intersection property” (CHIP) and the “basic constraint qualification” (BCQ) condition are discussed. Best approximations with differentiable constraints and convex constraints are characterized. The analysis generalizes some linearly constrained results of recent works [F. Deutsch, W. Li...

متن کامل

Mathematical Programs with Complementarity Constraints in Banach Spaces

We consider optimization problems in Banach spaces involving a complementarity constraint defined by a convex cone K. By transferring the local decomposition approach, we define strong stationarity conditions and provide a constraint qualification under which these conditions are necessary for optimality. To apply this technique, we provide a new uniqueness result for Lagrange multipliers in Ba...

متن کامل

New three-step iteration process and fixed point approximation in Banach spaces

‎In this paper we propose a new iteration process‎, ‎called the $K^{ast }$ iteration process‎, ‎for approximation of fixed‎ ‎points‎. ‎We show that our iteration process is faster than the existing well-known iteration processes using numerical examples‎. ‎Stability of the $K^{ast‎}‎$ iteration process is also discussed‎. ‎Finally we prove some weak and strong convergence theorems for Suzuki ge...

متن کامل

On Constraint Qualification for an Infinite System of Convex Inequalities in a Banach Space

For a general infinite system of convex inequalities in a Banach space, we study the basic constraint qualification and its relationship with other fundamental concepts, including various versions of conditions of Slater type, the Mangasarian–Fromovitz constraint qualification, as well as the Pshenichnyi–Levin–Valadier property introduced by Li, Nahak, and Singer. Applications are given in the ...

متن کامل

Characterization of Properly Efficient Solutions for Convex Multiobjective Programming with Nondifferentiable vanishing constraints

This paper studies the convex multiobjective optimization problem with vanishing constraints‎. ‎We introduce a new constraint qualification for these problems‎, ‎and then a necessary optimality condition for properly efficient solutions is presented‎. ‎Finally by imposing some assumptions‎, ‎we show that our necessary condition is also sufficient for proper efficiency‎. ‎Our results are formula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2003